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Observation of superluminal and slow light propagation
in erbium-doped optical fiber

A. Schweinsberg
1
, N. N. Lepeshkin

1,3
, M. S. Bigelow

1,4
,

R. W. Boyd
1 and S. Jarabo

2

1 The Institute of Optics, University of Rochester - Rochester, NY 14627, USA
2 Departamento de F́ısica Aplicada, Facultad de Ciencias, Universidad de Zaragoza
Pedro Cerbuna 12, 50009 Zaragoza, Spain
3 San Francisco State University - San Francisco, CA 94132, USA
4 The United States Air Force Academy - Colorado Springs, CO 80840, USA

received 1 September 2005; accepted in final form 9 November 2005
published online 2 December 2005

PACS. 42.65.-k – Nonlinear optics.

PACS. 42.81.Dp – Propagation, scattering, and losses; solitons.

Abstract. – We observe both extremely slow and superluminal pulse propagation speeds
at room temperature in an erbium-doped fiber (EDF). A signal at 1550 nm is sent through
an erbium-doped fiber with varying powers of a 980 nm pump. The degree of signal delay or
advancement is found to depend significantly on the pump intensity. We observe a maximum
fractional advancement of 0.124 and a maximum fractional delay of 0.089. The effect is demon-
strated both for a sinusoidally modulated signal and for Gaussian pulses. The ability to control
the sign and magnitude of the pulse velocity could have important implications for applications
in photonics.

There has recently been much interest in optical processes that can lead to unusually
small or unusually large group velocities of propagation through material systems. Such
situations can lead to many possible applications, such as the development of variable optical
delay lines for use in telecommunication systems. As the expression for the group velocity
of light is given by vg = c/(n + ω ∂n

∂ω ), where n is the phase index, materials with highly
dispersive regions can exhibit group velocities that are very low, very large, or even negative [1–
3]. As regions of high dispersion are coupled to sharp absorption peaks according to the
Kramers-Kronig relations, studies have focused on techniques that are capable of producing
these features in the absorption spectrum. Electromagnetically induced transparency (EIT),
a technique that creates a narrow transparency window for a probe pulse via the application
of a strong pump field at a different frequency, has been shown to produce slow light in several
material systems [4–7]. Additionally, by making use of the phenomenon of coherent population
oscillations (CPO), researchers have produced slow or fast pulse propagation effects in ruby [8],
alexandrite [9], and low-temperature semiconductor quantum wells [10].
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Still another procedure for slowing the velocity of light is to make use of the rapid variation
of refractive index that accompanies the gain associated with the processes of stimulated
Brillouin scattering [11–13] and stimulated Raman scattering [14].

In the present work, we show that both slow and fast light propagation can occur in
erbium-doped optical fiber, occurring through the process of coherent population oscillations.
The widespread use of erbium-doped fiber amplifiers at the 1550 nm signal wavelength used
in the telecommunications industry suggests that slow and fast light effects in this system
could lead to important applications. The technique described here works at room tempera-
ture. Additionally, the fiber system has a very simple experimental setup and allows for the
possibility of long interaction lengths and high intensities, both of which can lead to large
time delays. Moreover, while pulses can be delayed without a separate pump field, the easy
integration of a pump at 980 nm enables the propagation speed to be tuned continuously,
leading to either significant delay or significant advancement for appropriate pulse widths.
Previous workers had observed phase delays of modulated light fields in EDFA’s [15–17]. The
present research extends this work by showing that both delays and advancement are possible
for either modulated or pulsed light fields. We also develop a theoretical model that describes
our experimental results with high accuracy.

Coherent population oscillations occur when the ground state population of a saturable
medium oscillates at the beat frequency between two applied optical fields. The oscillation
creates a narrow hole in the absorption spectrum having a linewidth on the order of the
inverse of the excited-state lifetime; this hole is susceptible to power broadening. The original
theoretical prediction of spectral holes from CPO was made in 1967 by Schwartz and Tan [18],
and was based upon an analysis of the density matrix equations of motion. Some additional
insight may be gained by considering the problem in the time domain, where the slow light
effect of a CPO hole can be seen as the saturation of the medium by the leading edge of the
pulse, allowing the remainder to be transmitted with less attenuation. The resulting pulse in
this case would be delayed, but reduced in overall intensity. Oppositely, a medium exhibiting
saturable gain produces an advanced pulse. The ground state recovery time of the system is
determined by the lifetime of the metastable state, which places a lower bound on the pulse
duration for which anomalous propagation effects can be observed. This explanation of the
effect was first used by Basov et al. in 1965 [19] and was explored in more theoretical detail
by Selden in following years [20,21].

We can model the propagation of intensity-modulated 1550 nm light through an erbium-
doped fiber in the presence of a 980 nm pump using a rate equation analysis [16]. The energy
levels in erbium can be approximated as a three-level system, and under the additional ap-
proximation of rapid decay from the upper pumping state to the metastable state, we obtain
the rate equation for the ground state population density n:

dn

dt
=

ρ − n

τ
+

(
1 − n

ρ

)
βsIs − n

ρ
αsIs − n

ρ
αpIp, (1)

where ρ is the Er3+ ion density, τ is the metastable level lifetime (10.5 ms), Ip is the pump
intensity in units of photons/area/time, Is is the signal intensity, βs is the signal emission
coefficient, and αp and αs are the pump and signal absorption coefficients. We solve this
equation for n, since the absorption is proportional to the ground state population density.
First, we note that the steady-state solution to eq. (1) is given by n0 = (ρ/τ +βsIs)/ωc, where
we have defined the “CPO center frequency” as

ωc =
1
τ

+
αpIp

ρ
+

(αs + βs)Is

ρ
. (2)
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Fig. 1 – Frequency and pump power dependence of the fractional delay observed in propagation
through erbium-doped fiber. The input was sinusoidally modulated beam at 1550 nm with an average
power of 0.8mW. Results of the numerical model are shown as solid lines along with the experimental
data points. The different curves represent different pump powers. In all cases, the ratio Im/I0 = 0.08.

We will see that this frequency determines the width of the spectral hole. Its width is the
inverse of the metastable-state lifetime, with additional terms that allow for power broadening
by the pump and signal fields. Because a single intensity-modulated beam can be expressed
in the frequency domain as a field with two sidebands separated by the modulation frequency,
it can provide the input fields for CPO. If we modulate the signal intensity as Is = I0 +
Im cos(∆t), we find that the ground state population density oscillates as n(t) = n0 + δn(t),
where

δn(t) =
(

ωc cos(∆t) + ∆ sin(∆t)
ω2

c + ∆2

)
Img (3)

and we have additionally defined the gain coefficient as

g = −n0

ρ
(αs + βs) + βs. (4)

We then find that, neglecting second-order terms in the modulated signal, the propagation
equation can be written as

dIm

dz
= gIm − α1(Im, Ip, I0)I0, (5)

where

α1(Im, Ip, I0) =
(

αs + βs

ρ

) (
ωc

ω2
c + ∆2

)
Img. (6)
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Fig. 2 – Modulation gain, ln
[

(Im/I0)out

(Im/I0)in

]
, showing the holes in the absorption and gain spectra,

plotted for the same traces as in fig. 1. From largest to smallest low-frequency gain, the curves
represent pump powers of 0, 6.0, 9.0, 24.5, 49.0, and 97.5mW.

The phase shift of the modulation is described by

dφ

dz
=

I0

Im
α2(Im, Ip, I0), (7)

where

α2(Im, Ip, I0) =
(

αs + βs

ρ

)(
∆

ω2
c + ∆2

)
Img. (8)

Here we notice that the modulation absorption coefficient α1 is taken from the cosinusoidal
part of δn, while the phase shift α2 comes from the sinusoidal part, which is out of phase with
the original signal modulation. We also notice that the signs of both α1 and α2 are fixed by
the sign of the gain coefficient g, which itself is determined by the balance between the net
gain and absorption experienced by the signal. Furthermore, from the expression for α2, we
can see that the peak of the phase shift will occur when ∆ = ωc. In this simplified approach,
we have neglected the effect that the time-dependent part of the signal field will have on the
pump field, including only the spatial modulation due to I0.

The experimental setup used to observe this effect consists essentially of an erbium-doped
fiber amplifier in the reverse-pumped configuration. The signal source is a tunable diode laser,
operating at 1550 nm. The beam is coupled into a fiber and sent through 13 m of EDF which is
pumped by a counter-propagating beam from a 980 nm diode laser. Two percent of the input
light is split off before the EDF for use as a reference. For experiments using a sinusoidally
modulated input, the current of the laser is modulated directly by a function generator. To
create Gaussian pulses, the beam was passed through a rotating wheel with a narrow slit,
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Fig. 3 – Fractional advancement vs. the log of the inverse pulse width in the regimes of slow light (a)
and superluminal propagation (b). The x-axis is the log of the inverse of the pulse width, so that the
width data may be easily compared to modulation frequency data, as shown in the inset. Other insets
show sample time traces of the pulses. For the slow light case, the peak input power was 0.8mW
and there was no pump. Power transmission was about 0.1%. For the fast light data, the pump
power was 12mW and the signal power was weak enough to make negligible its contributions to hole
broadening and pulse delay. In this case, the signal experienced a total gain factor of 5. Fractional
advancement/delay was calculated with respect to twice the FWHM.

before being coupled into the single-mode fiber. This process converts a continuous beam
with a Gaussian spatial profile into a series of pulses with Gaussian time profiles. In each
experiment, we subtracted from the raw data a trace taken with 13 m of undoped silica fiber
replacing the EDF, to compensate for any inherent response difference between the InGaAs
photodiodes used to detect the signal and reference fields.

A series of experiments showing the fractional delay or advancement of a modulated in-
put field is shown in fig. 1. Traces are plotted against the log of the modulation frequency
and are taken with varying pump powers, with slow light being recorded with little or no
pump and superluminal propagation being demonstrated for higher pump powers. Anoma-
lous propagation speeds are observed over roughly 1.5 decades of bandwidth, with the peak of
the effect being pushed to higher frequencies with increasing pump power. However, the effect
appears to saturate, with a doubling of pump power from 49 mW to 97.5 mW producing only
a modest increase in peak frequency, and we do not observe large modulation advancements
above 10 kHz for any value of pump power. Notably, for a given frequency, increasing the
pump power can significantly increase the fractional advancement. For example, at 31 Hz a
signal with a fractional delay of 0.08 unpumped will have a fractional advancement of 0.04
with 20 mW of 980 nm pump, and can be tuned continuously by varying the pump power
in this range. The largest fractional advancement recorded was 0.125 at a pump power of
97.5 mW, while the largest fractional delay shown is 0.075 and is obtained with no pump. By
increasing the signal power from 0.8 mW to 1.2 mW, the fractional delay can be increased to
0.089 demonstrating the signal power dependence predicted theoretically.
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Theoretical curves are produced through numerical solution of the propagation equa-
tions (5)-(8) and show good agreement with the experimental data. The effective absorp-
tion and emission coefficients and the erbium ion density are found by a fit to the fractional
advancement data. Parameters used for the calculation are αp = 0.11 m−1, αs = 0.54 m−1,
βs = 1.00 m−1, ρ = 1.78 × 1024 m−3, τ = 10.5 ms, mode field diameter = 2.75 µm. By ex-
amining the gain or loss on the modulated signal, we can directly observe the hole in the
absorption or gain spectra due to CPO. Figure 2 shows the relative modulation attenuation
plotted against the log of the modulation frequency for different pump powers. Interestingly,
the modulation experiences relative gain over the DC signal for low pump powers, when the
EDF is acting as a saturable absorber, and relative loss at higher pump powers, when the
medium behaves as an amplifier.

In accordance with what would be expected from the modulation data, we observe that
Gaussian pulses propagate through an EDF with an effective velocity that is either slow or
superluminal depending on the pump power. Figure 3 shows plots of fractional advancement
as a function of pulse width. In one case, the EDF was pumped at 12 mW, and in the
other, the pump was turned off. Insets show sample time traces of the advanced and delayed
pulses (with normalized intensity) and windows indicating the corresponding domains of the
modulation data for comparison with fig. 1. For the unpumped case, the maximum fractional
delay recorded was 0.055, corresponding to an effective pulse velocity of c/(1.2 × 104). The
largest fractional advancement observed was 0.092, or a pulse velocity of c/(−5600). For pulses
slightly shorter than the inverse of the CPO hole bandwidth, we notice significant distortion
in the transmitted pulse envelope.

In our work we have observed only relatively small fractional advancements and delays.
Even these small timing changes could be useful for certain technological applications, such
as centering a data pulse into a time window, an important step in the process known as data
stream regeneration. For certain other applications, larger fractional delays or advancements
are desirable. The delays and advancements that we observed are limited primarily by pump
depletion effects. Greater delays and advancements could be obtained by pumping the erbium-
doped fiber from both ends or by cascading several fiber stages.

In summary, we have demonstrated slow and superluminal light propagation speeds in an
erbium-doped fiber, the effect being tunable from one regime to the other by varying the pump
power. We were able to achieve significant fractional delays and advancements for pulses at
the technologically important wavelength of 1550 nm. Our technique exploits the phenomenon
of coherent population oscillations, which allow for the delay or advancement of a pulse by
burning a narrow spectral hole in an optically saturable medium.
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